Optimally adapted multi-state neural networks trained with noise
نویسندگان
چکیده
The principle of adaptation in a noisy retrieval environment is extended here to a diluted attractor neural network of Q-state neurons trained with noisy data. The network is adapted to an appropriate noisy training overlap and training activity, which are determined self-consistently by the optimized retrieval attractor overlap and activity. The optimized storage capacity and the corresponding retriever overlap are considerably enhanced by an adequate threshold in the states. Explicit results for improved optimal performance and new retriever phase diagrams are obtained for Q53 and Q54, with coexisting phases over a wide range of thresholds. Most of the interesting results are stable to replica-symmetry-breaking fluctuations. @S1063-651X~99!04201-4#
منابع مشابه
The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)
Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...
متن کاملNoise Adaptation of Hmms Using Neural Networks
This paper proposes a new method, using neural networks, of adapting phone HMMs to noise added speech. The network is designed to map clean speech HMMs to noise-adapted HMMs using inputs of clean speech phone HMMs, noise HMMs and signal-to-noise ratios (S/N). The network is trained to minimize the mean squared error between the output HMMs and the target noise-adapted HMMs. Noisy broadcast-news...
متن کاملNeural-network-based HMM adaptation for noisy speech
This paper proposes a new method, using neural networks, of adapting phone HMMs to noisy speech. The neural networks are designed to map clean speech HMMs to noise-adapted HMMs, using noise HMMs and signal-to-noise ratios (SNRs) as inputs, and are trained to minimize the mean square error between the output HMMs and the target noise-adapted HMMs. In evaluation, the proposed method was used to r...
متن کاملPredicting the Grouting Ability of Sandy Soils by Artificial Neural Networks Based On Experimental Tests
In this paper, the grouting ability of sandy soils is investigated by artificial neural networks based on the results of chemical grout injection tests. In order to evaluate the soil grouting potential, experimental samples were prepared and then injected. The sand samples with three different particle sizes (medium, fine, and silty) and three relative densities (%30, %50, and %90) were injecte...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کامل